
Varying environments can speed up evolution
Nadav Kashtan, Elad Noor, and Uri Alon*

Deptartment of Molecular Cell Biology and Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel

Edited by Curtis G. Callan, Jr., Princeton University, Princeton, NJ, and approved June 19, 2007 (received for review December 28, 2006)

Simulations of biological evolution, in which computers are used to
evolve systems toward a goal, often require many generations to
achieve even simple goals. It is therefore of interest to look for
generic ways, compatible with natural conditions, in which evo-
lution in simulations can be speeded. Here, we study the impact of
temporally varying goals on the speed of evolution, defined as the
number of generations needed for an initially random population
to achieve a given goal. Using computer simulations, we find that
evolution toward goals that change over time can, in certain cases,
dramatically speed up evolution compared with evolution toward
a fixed goal. The highest speedup is found under modularly
varying goals, in which goals change over time such that each new
goal shares some of the subproblems with the previous goal. The
speedup increases with the complexity of the goal: the harder the
problem, the larger the speedup. Modularly varying goals seem to
push populations away from local fitness maxima, and guide them
toward evolvable and modular solutions. This study suggests that
varying environments might significantly contribute to the speed
of natural evolution. In addition, it suggests a way to accelerate
optimization algorithms and improve evolutionary approaches in
engineering.

biological physics � modularity � optimization � systems biology

A central question is how evolution can explain the speed at
which the present complexity of life arose (1–17). Current

computer simulations of evolution are well known to have difficulty
in scaling to high complexity. Such studies use computers to evolve
artificial systems, which serve as an analogy to biological systems,
toward a given goal (6, 9, 18). The simulations mimic natural
evolution by incorporating replication, variation (e.g., mutation and
recombination), and selection. Typically, a logarithmic slowdown in
evolution is observed: longer and longer periods are required for
successive improvements in fitness (6, 9, 18) [similar slowdown is
observed in adaptation experiments on bacteria in constant envi-
ronments (19, 20)]. Simulations can take many thousands of
generations to reach even relatively simple goals, such as Boolean
functions of several variables (9, 18). Thus, to understand the speed
of natural evolution, it is of interest to find generic ways, compatible
with natural conditions, in which evolution in simulations can be
speeded.

To address this, we consider here the fact that the environment
of organisms in nature changes over time. Previous studies have
indicated that temporally varying environments can affect several
properties of evolved systems such as their structure (6), robustness
(21), evolvability (22, 23), and genotype-phenotype mapping (10,
24). In particular, goals that change over time in a modular fashion
(18), such that each new goal shares some of the subproblems with
the previous goal, were found to spontaneously generate systems
with modular structure (18).

Here, we study the effect of temporally varying environments on
the speed of evolution. We tested the speed of in silico evolution
when the goal changes from time to time, a situation which might
be thought to make evolution more difficult. We considered a
variety of scenarios of temporally varying environments. The speed
of evolution is defined as the number of generations needed, for an
initially random population, to achieve a given goal. We find that
temporally varying goals can substantially speed evolution com-
pared with evolution under a fixed goal (in which the same goal is

applied continuously). Not all scenarios of varying goals show
speedup. Large speedup is consistently observed under modularly
varying goals (MVG), and, in some conditions, with randomly
varying goals (RVG). A central aim was to find how the speedup
scales with the difficulty of the goal. We find that the more complex
the goal, the greater the speedup afforded by temporally varying
goals. This suggests that varying environments may contribute to
speed up natural evolution.

Results
We compared evolution under a fixed goal to evolution under four
different scenarios of temporally varying goals: MVG and three
different scenarios of RVG.

In MVG, we considered goals that can be decomposed into
several subgoals (18). The goal changes from time to time, such that
each new goal shares some of the subgoals with the previous goal.
For example, the two subgoals described by the functions f(x, y) and
h(w, z) can be combined by a third function g to form a modular goal
with four inputs: G � g(f(x, y), h(w, z)). Modular variations of such
a goal were generated by changing one of the functions g, f, or h. For
example, consider the subgoals made of the exclusive-OR (XOR)
function: f � x XOR y and h � w XOR z. One goal can be formed
by combining these, using an OR function, G1 � g(f, h) � f OR h �
(x XOR y) OR (w XOR z). A modular variation of this goal is G2 �
g�(f, h) � f AND h � (x XOR y) AND (w XOR z) generated by
changing the function g from g � OR to g� � AND. A different
modular variation is to G3 � g(f�, h) � (x EQ y) OR (w XOR z), by
changing the function f from f � XOR to f� � EQ (equals). In this
way, a large number of modular goals can be generated.

In addition to MVG, we also examined periodic changes between
a given goal G1 and a randomly selected goal R (6), and then back
to G1 and so on. We considered two different scenarios of such
RVG: in the first scenario, the goals change periodically between
G1 and the same random goal R. This is called RVGc, where c
stands for constant random goal. In the second scenario, a new
random goal is chosen every time the goal changes. This is called
RVGv, where v stands for varying random goal.

Finally, we examined a scenario where the goal switches period-
ically from a given goal G1 to a situation with no fitness selection
and only neutral evolution. This scenario is called VG0.

To compare the speed of evolution under a fixed goal with
evolution under varying goals, we used standard genetic algorithms
(25–27) to evolve networks that are able to make computations. The
simulations start with a population of random networks. Each
network in the population is represented by a genome that repre-
sents the nodes and connections in the network. Evolution proceeds
toward a defined goal: to compute a specific output based on inputs.

Author contributions: N.K., E.N., and U.A. designed research, performed research, analyzed
data, and wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

Abbreviations: Gn, goal n; MVG, modularly varying goals; NAND, NOT AND; RVG, randomly
varying goals; XOR, exclusive-OR.

*To whom correspondence should be addressed. E-mail: urialon@weizmann.ac.il.

This article contains supporting information online at www.pnas.org/cgi/content/full/
0611630104/DC1.

© 2007 by The National Academy of Sciences of the USA

www.pnas.org�cgi�doi�10.1073�pnas.0611630104 PNAS � August 21, 2007 � vol. 104 � no. 34 � 13711–13716

EV
O

LU
TI

O
N

http://www.pnas.org/cgi/content/full/0611630104/DC1
http://www.pnas.org/cgi/content/full/0611630104/DC1

Each network is evaluated to compute its fitness, defined as the
fraction of all possible input values for which the network gives the
desired output. Networks with higher fitness are given a higher
probability to replicate. Standard genetic operations [mutations
and crossovers (recombination)] are applied to alter the genomes.
As generations proceed, the fitness of the networks in the popu-
lation increases, until a perfect solution to the goal is found [more
details in Methods and supporting information (SI) Appendix]. For
generality, we used four different types of well studied network
models, including Boolean logic circuits, integrate-and-fire neural
networks, and networks of continuous functions (Table 1). In
addition to the computational models, we also considered a well
studied structural model of RNA (28–32). In this model, we used
genetic algorithms to evolve RNA molecules toward a specific
secondary structure.

We begin with a detailed description of one case, and then
summarize the results for all models. We start with combinatorial
logic circuits made of NOT AND (NAND) gates. Circuits of NAND
gates are universal in the sense that they can compute any logical
function. They serve as the basic building blocks of current digital
electronics. We evolved circuits built of NAND gates toward a fixed
goal G1 made of three XOR operations and three AND operations
acting on six inputs, G1 � [(x XOR y) AND (w XOR z)] AND [(w
XOR z) AND (p XOR q)] (see SI Appendix, section 1.1). Starting
from random circuits, the median time to evolve circuits that
perfectly achieve this goal was TFG � 8 � 104 � 2 � 104 generations
(the subscript FG corresponds to fixed goal).

Next, we applied MVG, in which goals were changed every E �
20 generations. In MVG, during the simulation, each new goal was
similar to G1 except that one of the three AND operations was

replaced with an OR or vice versa (see SI Appendix, section 1.1).
Evolution under these changing goals rapidly yielded networks that
adapt to perfect solutions for each new goal within a few genera-
tions. The median time to find perfect solutions for G1, from initial
random population, was TMVG � 8 � 103 � 1.5 � 103 generations.
This time was much shorter than in the case of a fixed goal,
reflecting a speedup of evolution by a factor of �10, S � TFG/TMVG
� 10 (see Fig. 1a, arrow). Although the goals changed every 20
generations, a perfect solution for goal G1 was found faster than in
the case where the goal G1 was applied continuously.

We repeated this for different modular goals made of combina-
tions of XOR, EQ, AND, and OR functions. The different goals
each had a different median time to reach a solution under fixed
goal evolution, ranging from TFG � 2 � 102 to TFG � 3 � 106

generations. Thus, the difficulty of the goals, defined as the time
needed to solve them ‘‘from scratch,’’ spanned about four decades.
We find that the more difficult the fixed goal, the larger the speedup
afforded by MVG (Fig. 1a). A speedup of �100-fold was observed
for the hardest goals. The speedup S appeared to increase as a
power-law with the goal complexity, S � (TFG)� with � � 0.7 � 0.1.

Next, we studied the other three scenarios of temporally varying
goals on each one of the different goals. Again, the goals changed
every 20 generations. The random goals were random Boolean
functions. We found that under RVGv, there was also a significant
speedup, and under VG0 and RVGc there was a slowdown for most
goals (Table 1, SI Appendix, section 3).

The second model we studied was feed-forward combinatorial
circuits made of three logic gate types: AND, OR and NAND gates
(Model 2). We evolved circuits toward the goals mentioned for
model 1, and used similar MVG scenarios. We found that MVG

Table 1. Evolution under varying environments: Speedup comparison summary

Model Building blocks

Fold-Speedup for the hardest goals
(Smax), mean � SE

MVG RVGV VG0 RVGC

1 Logic circuits NAND gates 95 � 45 45 � 20 2.5 � 2 �1

2 Feed-forward logic circuits NAND, OR, AND 265 � 150 160 � 80 190 � 90 1.3 � 0.3

3 Feed-forward neural
networks

Integrate-and-fire neurons 700 � 450 10 � 5 1.5 � 1 �1

4 Feed-forward circuits Continuous functions 60 � 10 3 � 1 3 � 2 �1

5 RNA secondary structure Nucleotides A, U, G, and C 25 � 5 �1 �1 �1

Speedup results of evolutionary simulations of four different network models and a structural model of RNA. Smax is defined as the speedup of the hardest
goals (all goals with TFG � Gmax/2). Smax (mean � SE) under four different varying goals scenarios are shown for each of the models. Bold, mean (Smax) � 3.

13712 � www.pnas.org�cgi�doi�10.1073�pnas.0611630104 Kashtan et al.

http://www.pnas.org/cgi/content/full/0611630104/DC1
http://www.pnas.org/cgi/content/full/0611630104/DC1
http://www.pnas.org/cgi/content/full/0611630104/DC1
http://www.pnas.org/cgi/content/full/0611630104/DC1

speeded up evolution by a factor of up to 103. Again, the more
difficult the goal, the faster the speedup. The speedup scaled as S �
(TFG)� with � � 0.7 � 0.1 (Fig. 1b). RVGv and VG0 also showed
speedup, but smaller than under MVG; RVGC showed a slowdown
for all goals (Table 1).

In the two network models described above, the nodes compute
logic functions. We also evolved networks in which the nodes
compute real (non-Boolean) continuous functions (Models 3 and
4), and found similar conclusions. Model 3 used neural networks of
integrate-and-fire nodes. In these networks, edges between nodes
have weights. Each node sums the inputs multiplied by their

weights, and outputs a one (fires) if the sum exceeds a threshold.
The goals were to identify input patterns (SI Appendix, section 1.3).
We find that MVG showed the highest speedup, and scaled with
goal difficulty with exponent � � 0.8 � 0.1 (Fig. 1c and Table 1).

In the last network model (Model 4), each node computes a
continuous function of two inputs x and y: xy, 1 	 xy and x
 y 	
xy (see SI Appendix, section 1.4). The goals were polynomials of six
variables. The variables were continuous in the interval between 0

Fig. 2. Effect of frequency of goal switches on speedup. Speedup (�SE) is
shown under different frequencies of goal switches and with various popu-
lation sizes (Npop). Results are for goal G1 � (x XOR y) OR (w XOR z), using a
small version of model 2, with 4-input and 1-output goals (see Methods). In the
MVG scenario, the goal switched between G1 and G2 � (x XOR y) AND (w XOR
z) every E generations. The dashed line represents a speedup of S � 1.

Fig. 3. Fitness as a function of time in MVG, fixed goal and multiobjective
scenarios. Maximal fitness in the population (mean � SE) as a function of
generations for a 4-input version of model 1 for the goal G1 � (x XOR y) AND
(w XOR z). For the MVG and multiobjective case, the second goal was G2 � (x
XOR y) OR (w XOR z). For MVG, data are for epochs where the goal was G1.
For multiobjective evolution, in which two outputs from the network were
evaluated for G1 and G2, fitness of the G1 output is shown. Data are from 40
simulations in each case.

Fig. 1. Evolution speedup under varying goals. The five panels show the speedup of different model systems. Each graph describes the speedup of evolution
under MVG compared with fixed goal, versus the median time to evolve under a fixed goal (TFG). Each point represents the speedup, S � TFG /TMVG, for a given
goal. (a) Model 1: general logic circuits. (b) Model 2: feed-forward logic circuits. (c) Model 3: feed-forward neural networks. (d) Model 4: continuous function
circuits. (e) Model 5: RNA secondary structure. Speedup scales approximately as a power law with exponents in the range � � 0.7 to � � 1.0. T0 is the minimal
TFG value to yield S � 1 (based on regression). SEs were computed by using the bootstrap method.

Kashtan et al. PNAS � August 21, 2007 � vol. 104 � no. 34 � 13713

EV
O

LU
TI

O
N

http://www.pnas.org/cgi/content/full/0611630104/DC1
http://www.pnas.org/cgi/content/full/0611630104/DC1

and 1. We found that MVG showed the highest speedup, whereas
the other scenarios showed virtually no speedup (Table 1). The
speedup afforded by MVG increased with goal complexity (expo-
nent � � 0.7 � 0.1, Fig. 1d).

In the RNA secondary structure model, genomes are RNA
nucleotide sequences, and the goal was a given secondary structure.
We used standard folding algorithms (33) to determine the sec-
ondary structure of each sequence. The fitness of each molecule was
defined as 1 	 d/B, where d is the structural distance to the goal and
B is the sequence length (see Methods). The goals were RNA
secondary structure such as a tRNA structure; MVG were gener-
ated by modifications of hairpins in the original structure (see SI
Appendix, section 1.5). Under MVG, the fitness increased signifi-
cantly faster than under a fixed goal (SI Appendix, section 1.5),
whereas all other scenarios showed slowdown (Table 1). The
speedup afforded by MVG increased with goal complexity, with an
exponent of � � 1.0 � 0.2 (Fig. 1e).

We next examined the effects of the simulation parameters on
the speedup. We find that speedup under MVG occurs for a wide
range of switching times (the number of generations between goal
switches). For efficient speedup, the switching time of the goals
should be larger than the minimal time it takes to rewire the
networks to achieve each new goal and shorter than the time it takes
to solve a fixed goal. In the present examples, the former is usually
on the order of a few generations, and the latter is usually 103

generations or larger. We thus find that the range of switching times
with significant speedup typically spans several orders of magnitude
(Fig. 2). Furthermore, speedup occurred for a wide range of
population sizes, mutation and recombination rates, and selection
strategies (see SI Appendix, section 6). We find a similar speedup
also by using a hill-climbing algorithm (34) (see SI Appendix, section
7) instead of genetic algorithms. The fact that speedup is found in
two very different algorithms suggests that it is a feature of the
varying fitness landscape rather than the precise algorithm used.

Speedup is observed given that the problem is difficult enough,
and that solutions for the different modular goals differ by only a
few genetic changes in the context of the genotype used (otherwise
the population cannot switch between solutions in a reasonable
time). We found empirically that almost all modular goals of the
form discussed above that require more than a few thousand
generations to solve showed speedup under MVG.

Next, we asked whether the observed speedup under MVG is due
to goal modularity, goal variation, or both. For this purpose, we
considered multiobjective optimization (35) in which the different
variants of the modularly varying goals were represented as simul-
taneous (nonvarying) objectives. We compared the speed of evo-
lution of MVG with both objectives: weighted multiobjective op-
timization and pareto multiobjective optimization (26) (SI
Appendix, section 5). We find that the multiobjective scenarios
showed virtually no speedup, whereas the equivalent MVG sce-

Fig. 4. Trajectories and fitness landscapes in fixed goal and MVG evolution. (a) A typical evolution simulation in a small version of model 2, toward the fixed
goal G1 � (x XOR y) OR (w XOR z). Shown are properties of the best network in the population at each generation during simulation: fitness; distance to closest
solution (the required number of mutations to reach the closest solution); maximal fitness gradient; and average direction of the maximal gradient. 	1, away
from the closest solution;
1, toward the closest solution. (b) The trajectory of the fittest network, shown every 20 generations (arrowheads). The trajectory was
mapped to two-dimensions by means of multidimensional scaling (44), a technique that arranges points in a low dimension space while best preserving their
original distances in a high-dimension space (the 38-dimensional genome space where each axis corresponds to one bit in the genome). Red circles describe the
closest solutions. Numbers represent generations. (c) Same as in a but for evolution toward MGV, switching between G1 and G2 � (x XOR y) AND (w XOR z) every
20 generations. Properties of best circuit under goal G1 and G2 are in red and blue, respectively. (d) Trajectory of evolution under MVG. Red circles describe the
closest G1 solutions, and blue squares describe the closest G2 solutions.

13714 � www.pnas.org�cgi�doi�10.1073�pnas.0611630104 Kashtan et al.

http://www.pnas.org/cgi/content/full/0611630104/DC1
http://www.pnas.org/cgi/content/full/0611630104/DC1
http://www.pnas.org/cgi/content/full/0611630104/DC1
http://www.pnas.org/cgi/content/full/0611630104/DC1
http://www.pnas.org/cgi/content/full/0611630104/DC1
http://www.pnas.org/cgi/content/full/0611630104/DC1
http://www.pnas.org/cgi/content/full/0611630104/DC1

nario showed speedup (Fig. 3 and SI Appendix, section 5). Thus,
multiple modular goals by themselves, with no temporal variation,
are not sufficient for speedup to occur.

Finally, we aimed to discern the reason for the observed speedup
in evolution. To address this, we fully mapped the fitness landscape
of a version of model 2 with 4 inputs and 1 output by evaluating all
3 � 1011 possible genomes (see Methods). Such full enumeration
allowed us to track the evolving networks and their distance to the
closest solution. We find that during evolution toward a fixed goal,
the population became stuck at fitness plateaus (11) for long times.
These plateaus are typically many mutations away from the closest
solution for the goal. The maximal fitness gradient, defined as the
maximal change in fitness upon a mutation, is zero in the plateau.
Moreover, the gradient typically points away from nearby solutions
(Fig. 4 a and b). This explains why it takes a long time to find
solutions under a fixed goal. RVGv seems to help by pushing the
population in a random direction, thereby rescuing it from fitness
plateaus or local maxima. We find that MVG has an additional
beneficial effect: each time that a goal changes, a positive local
gradient for the new goal is generated (Fig. 4c). Strikingly, we find
that this gradient often points in the direction of a solution for the
new goal. Thus, the population rapidly reaches an area in the fitness

space where solutions for the two goals exist in close proximity (Fig.
4 c and d). In this area, when the goal switches, the networks rapidly
find a solution for the new goal just a few mutations away (Fig. 4d).

These findings lead to a schematic picture of how speedup might
be generated (Fig. 5). Under a fixed goal, the population spends
most of the time diffusing on plateaus or stuck at local maxima (Fig.
5a). Under MVG, local maxima or plateaus in one goal correspond
to areas with a positive fitness gradient for the second goal (Fig. 5b).
Over many goal switches, a ‘‘ramp’’ is formed in the combined
landscape made of the two fitness landscapes, that pushes the
population toward an area where peaks for the two goals exist in
close proximity (Fig. 5b). It seems that this effect of MVG is
different from a purely randomizing force [such as temperature in
the language of Monte Carlo and simulated-annealing optimization
algorithms (36)]. The effect may be related to the modular structure
of the solutions found with MVG, with modules that correspond to
each of the shared subgoals (18).

Discussion
Our simulations demonstrate that varying goals can speed up
evolution. MVG seemed to speed evolution in all models, and
showed the highest speedup factor. We find that speedup increases
strongly with the complexity of the goal. Not all types of temporally
varying goals show speedup. RVGV sometimes shows speedup, but
this depends on the model and the fitness landscape. In contrast,
RVGC and VG0 showed no speedup in most cases. The results thus
highlight the ability of MVG to speed up evolution, based on
variations between goals that share subgoals rather than between
goals that do not.

Natural evolution usually occurs in temporally and spatially
changing environments. These changes are often modular in the
sense that similar biological subgoals are encountered in each new
condition. On the level of the organism, for example, the same
subgoals, such as feeding, mating, and moving, must be fulfilled in
each new environment but with different nuances and combina-
tions. On the level of cells, the same subgoals such as adhesion and
signaling must be fulfilled in each tissue type but with different
input and output signals. On the level of proteins, the same
subgoals, such as enzymatic activity, binding to other proteins,
regulatory input domains, etc., are shared by many proteins but with
different combinations in each case. On all of these levels, goals
seem to have shared subgoals that vary from condition to condition
(niches, tissues, etc.).

The present study demonstrates the impact that varying envi-
ronments might have on the speed of evolution. In all cases studied,
the more complex the problem at hand, the more dramatic the
speedup afforded by temporal variations. Although the present
study aimed at understanding the speed of biological evolution, it
may also apply to evolutionary approaches in engineering and to
optimization algorithms (26, 36–39).

Methods
Genetic Algorithms Description. We used standard genetic algo-
rithms (26, 27) to evolve four network models and a structural
model of RNA. The settings of the simulations were as follows. A
population of Npop individuals was initialized to random binary
genomes of length B bits (random nucleotide sequences of length
B bases in the case of RNA). In each generation, the L individuals
with highest fitness (the elite) passed unchanged to the next
generation [elite strategy, see SI Appendix, section 1]. The L least
fit individuals were replaced by a new copy of the elite individuals.
Pairs of genomes from the nonelite individuals were recombined
(using crossover probability of Pc), and then each genome was
randomly mutated (mutation probability Pm per genome). The
present conclusions are generally valid also in the absence of
recombination (Pc � 0). Each simulation was run until fitness � 1
was achieved for the goal (or for all goals in case of MVG). If the
fitness was not achieved in Gmax generations, T was set at Gmax. We

Fig. 5. A schematic view of fitness landscapes and evolution under fixed goal
and MVG. (a) A typical trajectory under fixed goal evolution. The population
tends to spend long periods on local maxima or plateaus. (b) A typical
trajectory under MVG. Dashed arrows represent goal switches. An effectively
continuous positive gradient on the alternating fitness landscapes leads to an
area where global maxima exist in close proximity for both goals.

Kashtan et al. PNAS � August 21, 2007 � vol. 104 � no. 34 � 13715

EV
O

LU
TI

O
N

http://www.pnas.org/cgi/content/full/0611630104/DC1
http://www.pnas.org/cgi/content/full/0611630104/DC1

note that speedup occurred under a wide range of parameters (see
SI Appendix, sections 1 and 6). The simulations did not include
sexual selection (40), developmental programs (41), exploratory
behavior (1, 4), evolutionary capacitance (42), or learning (43). For
example, organisms seem to have mechanisms for facilitated phe-
notypic variation (1) that may further speed evolution. The impact
of these effects on evolution under varying environments can in
principle be studied by extending the present approach. For a
detailed description of the algorithm, models, goals, and MVG
schedules, see SI Appendix, section 1. Simulations were run on a
60-central processing unit computer grid.

Combinatorial Logic Circuits Composed of NAND Gates (Model 1).
Circuits were composed of up to 26 2-input NAND gates. Feed-
backs were allowed. Goals were 6 inputs and 1- or 2-output Boolean
functions composed from XOR, EQ, AND, and OR operations.
The goal was of the form G � F(M1,M2,M3) where M1, M2, and
M3 were two-input XOR or EQ functions. F was composed of
AND and OR functions. The varying goal changed in a probabilistic
manner every 20 generations by applying changes to F.

Feed-Forward Combinatorial Logic Circuits Composed of Several Gate
Types (Model 2). Circuits were composed of four layers of 8,4,2,1
gates (for the 1-output goals) or three layers of 8,4,2 gates (for the
2-output goals); the outputs were defined to be the outputs of the
gates at the last layer. Each logic gate could be AND, OR, or
NAND. Only feed-forward connections were allowed. Goals and
MVG scenarios were similar to model 1.

Model 2, Small Version. Circuits were composed of three layers of
4,2,1 gates; the output was that of the single gate at the third layer.
Goals were 4 inputs, 1-output Boolean functions.

Neural Network Model (Model 3). Networks were composed of seven
neurons arranged in three layers in a feed-forward manner. Each

neuron had two inputs, summed its weighted inputs and fired if the
sum exceeds a threshold. Inputs to the network had three levels:
low, medium, and high. The goal was to identify input patterns.
MVG scenario: The goal was a combination R of two 2-input
subgoals (S1, S2). R switched between AND and OR every 20
generations. In total we evaluated 15 goals composed of different
combinations of eight different 2-input subgoals.

Continuous Function Circuits (Model 4). Circuits were composed of
four layers of 8,4,2,1 gates (for the 1-output goals) or three layers
of 8,4,2 gates (for the 2-output goals). The outputs were those of the
nodes at the last layer. Connections were allowed only to the next
layer. Three types of 2-input continuous functions implementing:
xy, 1 	 xy, x
 y 	 xy were used. Inputs had values between 0 and
1. A goal was defined by a multivariate polynomial (of six variables).
MVG scenario: The goals were composed of three subgoals (T1,
T2, and T3) combined by a function (U) on their output. Ti were
bilinear functions of one of the forms: x
 y 	 2xy or 1 	 x 	 y

2xy. The varying goal switched in a probabilistic manner every 20
generations by applying changes on U.

RNA Secondary Structure (Model 5). We used standard tools for
structure prediction (33) available at www.tbi.univie.ac.at/RNA/,
and the ‘‘tree edit’’ structural distance (33). The goals were the
secondary structure of the Saccharomyces cerevisiae phenylalanine
tRNA and a synthetic structure composed of three hairpins. For
MVG, three modular variations of each of the two goals were
constructed by changing each of the three hairpins in the secondary
structure into an open loop. Goals changed every 20 generations.

We thank A. E. Mayo, M. Parter, T. Kalisky, G. Shinar, and all the members
of our laboratory for discussions; and R. Kishony, H. Lipson, M. Kirschner,
N. Gov, T. Tlusty, R. Milo, N. Barkai, and S. Teichmann for comments. This
work was supported by the Hanford Surplus Faculty Program, the National
Institutes of Health, and the Kahn Family Foundation.

1. Kirschner M, Gerhart JC (2005) The Plausibility of Life: Resolving Darwin’s
Dilemma (Yale Univ Press, London).

2. Eldredge N, Gould SJ (1997) Science 276:338–341.
3. Elena SF, Cooper VS, Lenski RE (1996) Science 272:1802–1804.
4. Gerhart J, Kirschner M (1997) Cells, Embryos, and Evolution: Toward a Cellular

and Developmental Understanding of Phenotypic Variation and Evolutionary
Adaptability (Blackwell, Oxford).

5. Springer MS, Murphy WJ, Eizirik E, O’Brien SJ (2003) Proc Natl Acad Sci USA
100:1056–1061.

6. Lipson H, Pollack JB, Suh NP (2002) Evolution (Lawrence, Kans) 56:1549–1556.
7. Nilsson DE, Pelger S (1994) Proc Biol Sci 256:53–58.
8. Goldsmith TH (1990) Q Rev Biol 65:281–322.
9. Lenski RE, Ofria C, Pennock RT, Adami C (2003) Nature 423:139–144.

10. Wagner GP, Altenberg L (1996) Evolution (Lawrence, Kans) 50:967–976.
11. Kauffman S, Levin S (1987) J Theor Biol 128:11–45.
12. Hegreness M, Shoresh N, Hartl D, Kishony R (2006) Science 311:1615–1617.
13. Fontana W, Schuster P (1998) Science 280:1451–1455.
14. Wagner A (2005) FEBS Lett 579:1772–1778.
15. van Nimwegen E, Crutchfield JP, Huynen M (1999) Proc Natl Acad Sci USA

96:9716–9720.
16. Peisajovich SG, Rockah L, Tawfik DS (2006) Nat Genet 38:168–174.
17. Orr HA (2005) Nat Rev Genet 6:119–127.
18. Kashtan N, Alon U (2005) Proc Natl Acad Sci USA 102:13773–13778.
19. Elena SF, Lenski RE (2003) Nat Rev Genet 4:457–469.
20. Dekel E, Alon U (2005) Nature 436:588–592.
21. Thompson A, Layzell P (2000) in ICES 2000, pp 218–228.
22. Earl DJ, Deem MW (2004) Proc Natl Acad Sci USA 101:11531–11536.
23. Reisinger J, Miikkulainen R (2006) in Proceedings of the 8th Annual Conference

on Genetic and Evolutionary Computation (ACM, New York), pp 1297–1304.
24. Altenberg L (1995) Evolution and Biocomputation: Computational Models of

Evolution (Lecture Notes in Computer Science), eds Banzhaf W, Eeckman F
(Springer, New York), Vol 899, pp 205–259.

25. Holland J (1975) Adaptation in Natural and Artificial Systems (Univ of Michigan
Press, Anne Arbor, MI).

26. Goldberg D (1989) Genetic Algorithms in Search, Optimization, and Machine
Learning (Addison–Wesley, Reading, MA).

27. Mitchell M (1996) An Introduction to Genetic Algorithms (MIT Press, Cam-
bridge, MA).

28. Schuster P (2001) Biol Chem 382:1301–1314.
29. Schuster P, Fontana W, Stadler PF, Hofacker IL (1994) Proc Royal Soc London

Biol Sci 255:279–284.
30. Zuker M, Mathews DH, Turner DH (1999) in A Practical Guide in RNA

Biochemistry and Biotechnology, ed Barciszewski JCB (Kluwer Academic,
Dordrecht, The Netherlands), pp 11–44.

31. Ancel LW, Fontana W (2000) J Exp Zool 288:242–283.
32. Zuker M, Stiegler P (1981) Nucleic Acids Res 9:133–148.
33. Hofacker IV, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P

(1994) Monatsh Chem 125:167–188.
34. Johnson AW, Jacobson SH (2002) Discrete Applied Mathematics 119:37–57.
35. Fonseca CM, Fleming PJ (1995) Evolutionary Computation 3:1–16.
36. Newman MEJ, Barkema GT (1999) Monte Carlo Methods in Statistical Physics

(Oxford Univ Press, Oxford).
37. Gen M, Cheng R (1997) Genetic Algorithms and Engineering Design (Wiley Interscience,

New York).
38. Lipson H, Pollack JB (2000) Nature 406:974–978.
39. Schmidt MD, Lipson H (2007) in Genetic Programming Theory and Practice IV,

eds Goldberg DE, Koza JR (Springer, New York), pp 113–130.
40. Keightley PD, Otto SP (2006) Nature 443:89–92.
41. Wilkins A (2002) The Evolution of Developmental Pathways (Sinauer Associ-

ates, Sunderland, MA).
42. Queitsch C, Sangster TA, Lindquist S (2002) Nature 417:618–624.
43. Hinton GE, Nowlan SJ (1987) Complex Systems 1:495–502.
44. Kruskal JB, Wish M (1977) Multidimensional Scaling (Sage, Beverly Hills, CA).

13716 � www.pnas.org�cgi�doi�10.1073�pnas.0611630104 Kashtan et al.

http://www.pnas.org/cgi/content/full/0611630104/DC1
http://www.pnas.org/cgi/content/full/0611630104/DC1

